APPLICATION NOTE - 023

Harmonic analysis in power applications

By convention, waveforms are considered as starting $(t=0)$ at their peak values, ie:

$$
\begin{aligned}
& V(t)=\cos (\omega t) \\
& A(t)=\cos (\omega t+\theta) \quad \text { where } \theta \text { is the relative phase angle }
\end{aligned}
$$

So for harmonic analysis, using the complex notation:

$$
h_{n}=a_{n}+j b_{n}
$$

the in-phase and quadrature values of the $\mathrm{n}^{\text {th }}$ harmonic of a periodic waveform, $\mathrm{v}(\phi)$, are given by:

$$
\begin{aligned}
& a_{n}=\sqrt{ } 2 / 2 \pi \int_{-\pi}^{\pi} v(\phi) \cdot \cos (n \phi) d \phi \\
& b_{n}=\sqrt{ } 2 / 2 \pi \int_{-\pi}^{\pi} v(\phi) \cdot \sin (n \phi) d \phi
\end{aligned}
$$

For a square wave:

$$
\begin{array}{rlrll}
\mathrm{v}(\phi) & =-\mathrm{A} & \text { for } & & -\pi<\phi<-\pi / 2 \\
& =+\mathrm{A} & \text { for } & & -\pi / 2<\phi<\pi / 2 \\
& =-\mathrm{A} & \text { for } & & \pi / 2<\phi<\pi
\end{array}
$$

Then

$$
\begin{aligned}
a_{n} & =A \sqrt{ } 2 / 2 \pi n\left(-[\sin (n \phi)]+[\sin (n \phi)]-[\sin (n \phi))_{-\pi / 2}^{\pi / 2}\right) \\
& =A \sqrt{ } 2 / 2 \pi n(-\sin (-n \pi / 2)+\sin (n \pi / 2)-\sin (-n \pi / 2)+\sin (n \pi / 2) \\
& =A 2 \sqrt{ } 2 / \pi n \sin (n \pi / 2)
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{b}_{\mathrm{n}} & =\mathrm{A} \sqrt{ } 2 / 2 \pi \mathrm{n}(-[-\cos (\mathrm{n} \phi)]-[-\cos (\mathrm{n} \phi) / 2)]-\left[-\cos \binom{\pi}{-\pi / 2)]}\right. \\
& =\mathrm{A} \sqrt{ } 2 / 2 \pi \mathrm{n}(-\cos (-\mathrm{n} \pi)+\cos (\mathrm{n} \pi)) \\
& =0
\end{aligned}
$$

So it can be seen that for

$$
n=1,5,9 \ldots \quad a_{n}=A 2 \sqrt{ } 2 / \pi n \quad \text { (relative magnitude } 1 / n \text {, phase } 0^{\circ} \text {) }
$$

and for $n=3,7,11 \ldots \quad a_{n}=-A 2 \sqrt{ } 2 / \pi n \quad$ (relative magnitude $1 / n$, phase 180°)
and for even $n \quad a_{n}=0$
and in all cases $\quad b_{n}=0$

	Harmonic analysis in power applications	$525-023$	Issue 1	
Newtons4th Ltd	30 Loughborough Rd	Mountsorrel	Loughborough	LE12 7AT

